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Abstract
We investigate the effects of degenerate orbitals on the periodic Anderson model
by means of the dynamical mean field theory. A new formulation is proposed for
the effective impurity problem where the corresponding action is represented by
two distinct formulae. This enables us to perform the self-consistent calculation
efficiently. Upon introducing the inter-orbital interaction among conduction
electrons, the charge gap in the Kondo insulator is increased once and then
decreased. Eventually, the Kondo insulator is driven to an ordinary Mott–
Hubbard insulator.

Most of interesting phenomena in rare-earth heavy-fermion compounds may be described by
the simple periodic Anderson lattice model, which is given by itinerant conduction electrons
and localized f electrons. However, it was pointed out that in some uranium-based compounds,
the multi-orbital effects may be important for explaining anomalous magnetic response data [1].
Also, it was recently suggested that the multi-orbital conduction electrons with a localized array
of moments may be relevant for heavy-fermion behaviour in the transition metal compound
LiV2O4 [2, 3]. Therefore, it is desirable to investigate the effects of multi-orbitals on the
Anderson lattice model for such heavy-fermion systems.

We consider a correlated electron system coupled to the localized f electrons, which is
described by the two-orbital Anderson lattice model:

H =
∑

(i j),α,σ

ti j c
†
iασ c jασ + U

∑
i,α

niα↑niα↓ + U ′ ∑
i,σ,σ ′

ni1σ ni2σ ′

+
∑
i,σ

EF f †
iσ fiσ +

∑
i,α,σ

V (c†
iασ fiσ + f †

iσ ciασ ) + U ′′ ∑
i

n f i↑n f i↓, (1)

where ciασ ( fi,σ ) annihilates an electron with spin σ and orbital α (f electron with spin σ ) at the
i th site. Conduction electrons are assumed to have the intra-orbital (inter-orbital) interaction
U (U ′), and hybridize with localized f electrons having the f–f interaction U ′′.

To discuss the effects of degenerate orbitals on the Anderson lattice model, we make use
of the dynamical mean field theory (DMFT) [4, 5]. In this theory, the lattice model is mapped
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onto an effective impurity model, where local electron correlations can be taken into account
precisely. We propose here a new formulation of the impurity problem, based on the fact
that the interactions in the Hamiltonian equation (1) are divided into two parts for conduction
electrons and f electrons. This observation allows us to embed the original model into the
effective impurity model in two distinct ways. That is, we represent the effective action Seff

by two formulae:

Seff [i ] = −
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′ c†

iασ [G(c)
0 ]−1

αβ ciβσ +
∫ β

0
dτ

[
U

∑
α

niα↑niα↓ + U ′ ∑
σ,σ ′

ni1σ ni2σ ′

]

= −
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′ f †

iσ [G( f )

0 ]−1 fiσ +
∫ β

0
dτ U ′′n f i↑n f i↓, (2)

where G(c)
0 and G( f )

0 are the bare Green functions in the reduced impurity problem. These
actions can be described by standard Anderson models:

H c
imp =

∑
k,α,σ

ε
(c)
k a†

kασ akασ +
∑
α,σ

Ecc†
ασ cασ +

∑
k,α,σ

v
(c)
k (a†

kασ cασ + c†
ασ akασ )

+ U
∑

α

nc
α↑nc

α↓ + U ′ ∑
σ,σ ′

nc
1σ nc

2σ ′ , (3)

H f
imp =

∑
k,σ

ε
( f )

k b†
kσ bkσ +

∑
σ

E f f †
σ fσ +

∑
k,σ

v
( f )

k (b†
kσ fσ + f †

σ bkσ ) + U ′′n f
↑ n f

↓ , (4)

where akασ and bkσ are the newly introduced annihilation operators for host electrons, and
{εk, vk} is the set of the energy levels and hybridizations to be determined self-consistently.
The lattice Green function is given in terms of the self-energies �c, �′

c, and � f due to U , U ′,
and U ′′ as

G(k, z)−1 =
( z + µ − εk − �c −�′

c −V
−�′

c z + µ − εk − �c −V
−V −V z − EF − � f

)
. (5)

By performing the summation over the wavenumber k, we obtain the full Green functions G( f )

loc

and G(c)
loc, where the semicircular density of states

ρ(x) = 1

N

∑
k

δ(x − εk) = 2

π D

√
1 −

(
x

D

)2

is used. Imposing the self-consistent conditions, G(c)
loc = G(c)

imp and G( f )

loc = G( f )

imp, completes
our DMFT formulation.

It is remarkable that the method proposed here has the advantage of treating the ground
state properties of the system efficiently. In fact, when the impurity problem is solved, we can
perform the exact diagonalization calculation for a much larger cluster size compared with that
of the ordinary DMFT.

In this paper, we make use of the exact diagonalization method together with the cost
function method proposed by Caffarel and Krauth [6]. We focus here on the symmetric model,
and investigate the charge excitation gap 
, which may reveal some essential effects due to
the interactions. The results for the charge gap are shown in figure 1. In the following, we
take the bandwidth D as the unit of energy. The charge gap is written approximately, in terms
of the renormalization factors Zc and Z f , as


 =
√

Z 2
c + 8Zc Z f V 2 − Zc, (6)
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Figure 1. The charge gap as a function of the inter-band Coulomb interaction. We set U = U ′′ for
simplicity.
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Figure 2. Densities of states ρc and ρ f for V = 0.5 obtained by exact diagonalization with the
clusters Nc = 6 × 2 and N f = 10, respectively.

where Z−1
a = 1 − d Re �a/dω (subscript a = c or f ). In the case where U ′ = 0, the system

belongs to the Kondo insulating phase with the reduced charge gap in the presence of the f–f
interaction U ′′. This kind of renormalization is also caused by the Hubbard-type interaction
U for conduction electrons, as seen in figure 1. On the other hand, the inter-band interaction
U ′ for conduction electrons causes somewhat different effects: the charge gap is increased
up to U ′ ∼ U , and then decreased. The slight increment in the charge gap may be due to
charge fluctuations induced by U ′. As discussed below, 
 = 0 means that the sharp peak in
the density of states of the Kondo insulator disappears, and the system is driven to another
insulating phase of Mott–Hubbard type.

Some of the above properties are indeed seen in the densities of states for conduction
electrons (ρc) and f electrons (ρ f ) computed by exact diagonalization, as shown in figure 2.
As U ′ increases from zero, the density of states is enhanced around the Fermi surface.
This suggests that orbital fluctuations induced by U ′ among conduction electrons reduce the
correlation effects caused by U , making the Kondo-type renormalization somewhat weaker.
Beyond U ′ ∼ U , however, the charge gap is decreased rapidly,as already mentioned in figure 1.
Eventually, the charge gap of the Kondo insulator vanishes at a certain critical value, inducing
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a transition from the Kondo insulator to the Mott–Hubbard insulator. In this region (U ′ > U ),
the Mott–Hubbard gap solely characterizes the nature of the insulating phase.

In summary, we have investigated the effects of degenerate orbitals on the Anderson
lattice model. We have proposed a new formulation of the effective impurity problem in the
DMFT, for which the effective action is represented by two distinct formulae. This makes
the self-consistent calculation much more efficient. It has been clarified that the inter-band
interaction among conduction electrons causes a non-monotonic renormalization effect on the
charge gap, which eventually drives the Kondo insulator to a Mott–Hubbard insulator. The
results are consistent with those discussed in the degenerate Hubbard model, where the inter-
band Hubbard interaction gives rise to non-monotonic behaviour of the renormalized mass
in the Fermi liquid phase [7, 8]. Dynamical properties and finite-temperature properties in
the Anderson lattice with degenerate orbitals are interesting in connection with multi-channel
Kondo effects; this is now under consideration.
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